86 research outputs found

    Combining genome-wide association mapping and transcriptional networks to identify novel genes controlling glucosinolates in Arabidopsis thaliana.

    Get PDF
    BackgroundGenome-wide association (GWA) is gaining popularity as a means to study the architecture of complex quantitative traits, partially due to the improvement of high-throughput low-cost genotyping and phenotyping technologies. Glucosinolate (GSL) secondary metabolites within Arabidopsis spp. can serve as a model system to understand the genomic architecture of adaptive quantitative traits. GSL are key anti-herbivory defenses that impart adaptive advantages within field trials. While little is known about how variation in the external or internal environment of an organism may influence the efficiency of GWA, GSL variation is known to be highly dependent upon the external stresses and developmental processes of the plant lending it to be an excellent model for studying conditional GWA.Methodology/principal findingsTo understand how development and environment can influence GWA, we conducted a study using 96 Arabidopsis thaliana accessions, >40 GSL phenotypes across three conditions (one developmental comparison and one environmental comparison) and ∼230,000 SNPs. Developmental stage had dramatic effects on the outcome of GWA, with each stage identifying different loci associated with GSL traits. Further, while the molecular bases of numerous quantitative trait loci (QTL) controlling GSL traits have been identified, there is currently no estimate of how many additional genes may control natural variation in these traits. We developed a novel co-expression network approach to prioritize the thousands of GWA candidates and successfully validated a large number of these genes as influencing GSL accumulation within A. thaliana using single gene isogenic lines.Conclusions/significanceTogether, these results suggest that complex traits imparting environmentally contingent adaptive advantages are likely influenced by up to thousands of loci that are sensitive to fluctuations in the environment or developmental state of the organism. Additionally, while GWA is highly conditional upon genetics, the use of additional genomic information can rapidly identify causal loci en masse

    Genetic variation in the nuclear and organellar genomes modulates stochastic variation in the metabolome, growth, and defense

    Get PDF
    Recent studies are starting to show that genetic control over stochastic variation is a key evolutionary solution of single celled organisms in the face of unpredictable environments. This has been expanded to show that genetic variation can alter stochastic variation in transcriptional processes within multi-cellular eukaryotes. However, little is known about how genetic diversity can control stochastic variation within more non-cell autonomous phenotypes. Using an Arabidopsis reciprocal RIL population, we showed that there is significant genetic diversity influencing stochastic variation in the plant metabolome, defense chemistry, and growth. This genetic diversity included loci specific for the stochastic variation of each phenotypic class that did not affect the other phenotypic classes or the average phenotype. This suggests that the organism's networks are established so that noise can exist in one phenotypic level like metabolism and not permeate up or down to different phenotypic levels. Further, the genomic variation within the plastid and mitochondria also had significant effects on the stochastic variation of all phenotypic classes. The genetic influence over stochastic variation within the metabolome was highly metabolite specific, with neighboring metabolites in the same metabolic pathway frequently showing different levels of noise. As expected from bet-hedging theory, there was more genetic diversity and a wider range of stochastic variation for defense chemistry than found for primary metabolism. Thus, it is possible to begin dissecting the stochastic variation of whole organismal phenotypes in multi-cellular organisms. Further, there are loci that modulate stochastic variation at different phenotypic levels. Finding the identity of these genes will be key to developing complete models linking genotype to phenotype

    Whole genome resequencing of Botrytis cinerea isolates identifies high levels of standing diversity

    Get PDF
    How standing genetic variation within a pathogen contributes to diversity in host/pathogen interactions is poorly understood, partly because most studied pathogens are host-specific, clonally reproducing organisms which complicates genetic analysis. In contrast, Botrytis cinerea is a sexually reproducing, true haploid ascomycete that can infect a wide range of diverse plant hosts. While previous work had shown significant genomic variation between two isolates, we proceeded to assess the level and frequency of standing variation in a population of B. cinerea. To begin measuring standing genetic variation in B. cinerea, we re-sequenced the genomes of 13 different isolates and aligned them to the previously sequenced T4 reference genome. In addition one of these isolates was resequenced from four independently repeated cultures. A high level of genetic diversity was found within the 13 isolates. Within this variation, we could identify clusters of genes with major effect polymorphisms, i.e., polymorphisms that lead to a predicted functional knockout, that surrounded genes involved in controlling vegetative incompatibility. The genotype at these loci was able to partially predict the interaction of these isolates in vegetative fusion assays showing that these loci control vegetative incompatibility. This suggests that the vegetative incompatibility loci within B. cinerea are associated with regions of increased genetic diversity. The genome re-sequencing of four clones from the one isolate (Grape) that had been independently propagated over 10 years showed no detectable spontaneous mutation. This suggests that B. cinerea does not display an elevated spontaneous mutation rate. Future work will allow us to test if, and how, this diversity may be contributing to the pathogen's broad host range

    The Defense Metabolite, Allyl Glucosinolate, Modulates Arabidopsis thaliana Biomass Dependent upon the Endogenous Glucosinolate Pathway

    Get PDF
    14 páginas, 8 figuras y 3 tablas.Glucosinolates (GSLs) play an important role in plants as direct mediators of biotic and abiotic stress responses. Recent work is beginning to show that the GSLs can also inducing complex defense and growth networks. However, the physiological significance of these GSL-induced responses and the molecular mechanisms by which GSLs are sensed and/or modulate these responses are not understood. To identify these potential mechanisms within the plant and how they may relate to the endogenous GSLs, we tested the regulatory effect of exogenous allyl GSL application on growth and defense metabolism across sample of Arabidopsis thaliana accessions. We found that application of exogenous allyl GSL had the ability to initiate changes in plant biomass and accumulation of defense metabolites that genetically varied across accessions. This growth effect was related to the allyl GSL side-chain structure. Utilizing this natural variation and mutants in genes within the GSL pathway we could show that the link between allyl GSL and altered growth responses are dependent upon the function of known genes controlling the aliphatic GSL pathway.This work was funded by a Marie Curie International Outgoing Fellowship within the 7th European Community Framework Programme (PIOF-GA-2010-275286), the NSF DBI grant 820580 to DK, the NSF MCB grant 1330337 to DK, the USDA National Institute of Food and Agriculture, Hatch project number CA-D-PLS-7033-H to DK and by the Danish National Research Foundation (DNRF99) grant to DK and MB.Peer reviewe
    • …
    corecore